Curso de Cálculo NuméricoProfessor Raymundo de Oliveira |
| Home | Programa | Exercícios | Provas | Professor | Links | Interpolação Polinomial de Lagrange
Seja a tabela abaixo:
Deseja-se passar um polinômio de grau £ 3, pelos 4 pontos tabelados. O método de Lagrange constrói 4 polinômios auxiliares do terceiro grau: L0(x) , L1(x) , L2(x) e L3(x), onde: L0(x) vale zero nos pontos x1 , x2 , x3 e vale 1 no ponto x0 . L1(x) vale zero nos pontos x0 , x2 , x3 e vale 1 no ponto x1 . L2(x) vale zero nos pontos x0 , x1 , x3 e vale 1 no ponto x2 . L3(x) vale zero nos pontos x0 , x1 , x2 e vale 1 no ponto x3 . Como serão esses quatro polinômios ? Vejamos:
Repare que em L0 , no numerador aparece (x-x1)(x-x2)(x-x3), logo, para x = x1, x = x2 e x = x3 , o polinômio vale zero. Para x = x0 , o numerador é igual ao denominador e o polinômio vale 1. Afirmação semelhante pode ser feita para L1 , L2 e L3 . Assim, fica imediata a construção de L0 , L1 , L2 e L3. O polinômio interpolante (de Lagrange) será: P(x) = y0 L0(x) + y1 L1(x) + y2 L2(x) + y3 L3(x) pois: P(x0) = y0 L0(x0) + y1 L1(x0) + y2 L2(x0) + y3 L3(x0) = y0 pois: L0(x0) = 1 L1(x0) = 0 L2(x0) = 0 e L3(x0) = 0 , por construção. Da mesma forma, P(x1) = y1 , P(x2) = y2 e P(x3) = y3 . Logo o polinômio passa pelos pontos tabelados, sendo o polinômio interpolante, pois a solução é única; isto é, há um único polinômio de grau menor ou igual a três que passa nos quatro pontos tabelados. O polinômio P(x) sendo formado pela soma de quatro polinômios do terceiro grau será necessariamente de grau menor ou igual a três. Um exemplo:
Assim, P(x) = 3 L0(x) + 6 L1(x) + 8 L2(x) + 12 L3(x)
Para calcular, por exemplo, P(3), faz-se :
P(3) = 3.(3-2)(3-4)(3-7)/(-18) + 6(3-1)(3-4)(3-7)/10 + + 8(3-1)(3-2)(3-7)/(-18) + 12(3-1)(3-2)(3-4)/90
P(3) = - 12/18 + 48/10 + 64/18 – 24/90
P(3) = 7,422
Se você tiver dúvidas sobre a matéria, meu e-mail é: raymundo.oliveira@terra.com.br
| ||||||||||||||||||||
| Home | Programa | Exercícios | Provas | Professor | Links | |